Package 'Copula.Markov.survival'

Title: Copula Markov Model with Dependent Censoring
Description: Perform likelihood estimation and corresponding analysis under the copula-based Markov chain model for serially dependent event times with a dependent terminal event. Available are statistical methods in Huang, Wang and Emura (2020, JJSD accepted).
Authors: Xin-Wei Huang, Takeshi Emura
Maintainer: Xin-Wei Huang <[email protected]>
License: GPL-3
Version: 1.0.0
Built: 2025-02-18 03:55:13 UTC
Source: https://github.com/cran/Copula.Markov.survival

Help Index


Generate data from the Clayton copula for serial dependence and the Clayton copula for dependent censoring with the Weibull distributions

Description

The data generation process is based on the Clayton copula C_theta for serial dependence and the Clayton copula tilde(C)_alpha for dependent censoring with the marginal distributions Weib(scale1, shape1) and Weib(scale2, shape2). Censoring percentage can be controlled by constant b. This function is used when doing parametric bootstrap. The guide for using this function shall be explained by Huang (2019), and Huang, Wang and Emura (2020).

Usage

ClaytonClayton.Weibull.data(N, scale1, shape1, theta, scale2, shape2, alpha,  b, l)

Arguments

N

sample size

scale1

scale parameter for Weib(scale1, shape1), scale1 > 0

shape1

shape parameter for Weib(scale1, shape1), shape1 > 0

theta

copula parameter for C_theta, theta > 0

scale2

scale parameter for Weib(scale2, shape2), scale2 > 0

shape2

shape parameter for Weib(scale2, shape2), shape2 > 0

alpha

copula parameter for tilde(C)_alpha, alpha > 0

b

parameter of Unif(0, b) for controlling censoring percentage

l

length for data generation (default = 300)

Value

A list with the following elements:

Subject

a vector for numbers of subject

T_ij

a vector for event times

delta_ij

a vector for event indicator (=1 if recurrent; =0 if censoring)

T_i_star

a vector for death times

delta_i_star

a vector for death indicator (=1 if death; =0 if censoring)

Author(s)

Xinwei Huang

References

Huang XW, Wang W, Emura T (2020) A copula-based Markov chain model for serially dependent event times with a dependent terminal event. Japanese Journal of Statistics & Data Science. Accepted.

Examples

Y = ClaytonClayton.Weibull.data(N = 100, scale1 = 1, shape1 =0.5, theta = 2,
                                scale2 = 0.45, shape2 = 0.5, alpha = 2, b = 10, l = 300)

Parameter estimation based on the Clayton copula for serial dependence and the Clayton copula for dependent censoring with the Weibull distributions

Description

Perform two-stage estimation based on the Clayton copula C_theta for serial dependence and the Clayton copula tilde(C)_alpha for dependent censoring with the marginal distributions Weib(scale1, shape1) and Weib(scale2, shape2). The jackknife method estimates the asymptotic covariance matrix. Parametric bootstrap is applied while doing Kolmogorov-Smirnov tests and Cramer-von Mises test. The guide for using this function shall be explained by Huang (2019), and Huang, Wang and Emura (2020).

Usage

ClaytonClayton.Weibull.MLE(subject, t.event, event, t.death, death, stageI, Weibull.plot,
                                  jackknife, plot, GOF, GOF.plot, rep.GOF, digit)

Arguments

subject

a vector for numbers of subject

t.event

a vector for event times

event

a vector for event indicator (=1 if recurrent; =0 if censoring)

t.death

a vector for death times

death

a vector for death indicator (=1 if death; =0 if censoring)

stageI

an option to select MLE or LSE method for the 1st-stage optimization

Weibull.plot

if TRUE, show the Weibull probability plot

jackknife

if TRUE, the jackknife method is used for estimate covariance matrix (default = TRUE)

plot

if TRUE, the plots for marginal distributions are shown (default = FALSE)

GOF

if TRUE, show the p-values for KS-test and CvM-test

GOF.plot

if TRUE, show the model diagnostic plot

rep.GOF

repetition number of parametric bootstrap

digit

accurate to some decimal places

Details

When jackknife=FALSE, the corresponding standard error and confidence interval values are shown as NA.

Value

A list with the following elements:

Sample_size

Sample size N

Case

Count for event occurences

scale1

Scale parameter for Weib(scale1, shape1)

shape1

Shape parameter for Weib(scale1, shape1)

scale2

Scale parameter for Weib(scale2, shape2)

shape2

Shape parameter for Weib(scale2, shape2)

theta

Copula parameter for the Clayton copula C_theta

alpha

Copula parameter for the Clayton copula tilde(C)_alpha

COV

Asymptotic covariance estimated by the jackknife method

KS

Kolmogorov-Smirnov test statistics

p.KS

P-values for Kolmogorov-Smirnov tests

CM

Cramer-von Mises test statistics

p.CM

P-values for Cramer-von Mises tests

Convergence

Convergence results for each stage

Jackknife_error

Count for error in jackknife repititions

Log_likelihood

Log-likelihood values

Author(s)

Xinwei Huang

References

Huang XW, Wang W, Emura T (2020) A copula-based Markov chain model for serially dependent event times with a dependent terminal event. Japanese Journal of Statistics & Data Science. Accepted.

Examples

data = ClaytonClayton.Weibull.data(N = 30, scale1 = 1, shape1 =0.5, theta = 2,
                                   scale2 = 0.45, shape2 = 0.5, alpha = 2, b = 10, l = 300)

ClaytonClayton.Weibull.MLE(subject = data$Subject,
                           t.event = data$T_ij, event = data$delta_ij,
                           t.death = data$T_i_star, death = data$delta_i_star,
                           jackknife= TRUE, plot = TRUE)

Generate data from the Clayton copula for serial dependence and the Frank copula for dependent censoring with the Weibull distributions

Description

The data generation process is based on the Clayton copula C_theta for serial dependence and the Frank copula tilde(C)_alpha for dependent censoring with the marginal distributions Weib(scale1, shape1) and Weib(scale2, shape2). Censoring percentage can be controlled by constant b. This function is used when doing parametric bootstrap. The guide for using this function shall be explained by Huang (2019), and Huang, Wang and Emura (2020).

Usage

ClaytonFrank.Weibull.data(N, scale1, shape1, theta, scale2, shape2, alpha, b, l)

Arguments

N

sample size

scale1

scale parameter for Weib(scale1, shape1), scale1 > 0

shape1

shape parameter for Weib(scale1, shape1), shape1 > 0

theta

copula parameter for C_theta, theta > 0

scale2

scale parameter for Weib(scale2, shape2), scale2 > 0

shape2

shape parameter for Weib(scale2, shape2), shape2 > 0

alpha

copula parameter for tilde(C)_alpha, alpha \neq 0

b

parameter of Unif(0, b) for controlling censoring percentage

l

length for data generation (default = 300)

Value

A list with the following elements:

Subject

a vector for numbers of subject

T_ij

a vector for event times

delta_ij

a vector for event indicator (=1 if recurrent; =0 if censoring)

T_i_star

a vector for death times

delta_i_star

a vector for death indicator (=1 if death; =0 if censoring)

Author(s)

Xinwei Huang

References

Huang XW, Wang W, Emura T (2020) A copula-based Markov chain model for serially dependent event times with a dependent terminal event. Japanese Journal of Statistics & Data Science. Accepted.

Examples

Y = ClaytonFrank.Weibull.data(N = 100, scale1 = 1, shape1 =0.5, theta = 2,
                              scale2 = 0.45, shape2 = 0.5, alpha = 2, b = 10, l = 300)

Parameter estimation based on the Clayton copula for serial dependence and the Frank copula for dependent censoring with the Weibull distributions

Description

Perform two-stage estimation based on the Clayton copula C_theta for serial dependence and the Frank copula tilde(C)_alpha for dependent censoring with the marginal distributions Weib(scale1, shape1) and Weib(scale2, shape2). The jackknife method estimates the asymptotic covariance matrix. Parametric bootstrap is applied while doing Kolmogorov-Smirnov tests and Cramer-von Mises test. The guide for using this function shall be explained by Huang (2019) and Huang, Wang and Emura (2020).

Usage

ClaytonFrank.Weibull.MLE(subject, t.event, event, t.death, death, stageI, Weibull.plot,
                                jackknife, plot, GOF, GOF.plot, rep.GOF, digit)

Arguments

subject

a vector for numbers of subject

t.event

a vector for event times

event

a vector for event indicator (=1 if recurrent; =0 if censoring)

t.death

a vector for death times

death

a vector for death indicator (=1 if death; =0 if censoring)

stageI

an option to select MLE or LSE method for the 1st-stage optimization

Weibull.plot

if TRUE, show the Weibull probability plot

jackknife

if TRUE, the jackknife method is used for estimate covariance matrix (default = TRUE)

plot

if TRUE, the plots for marginal distributions are shown (default = FALSE)

GOF

if TRUE, show the p-values for KS-test and CvM-test

GOF.plot

if TRUE, show the model diagnostic plot

rep.GOF

repetition number of parametric bootstrap

digit

accurate to some decimal places

Details

When jackknife=FALSE, the corresponding standard error and confidence interval values are shown as NA.

Value

A list with the following elements:

Sample_size

Sample size N

Case

Count for event occurences

scale1

Scale parameter for Weib(scale1, shape1)

shape1

Shape parameter for Weib(scale1, shape1)

scale2

Scale parameter for Weib(scale2, shape2)

shape2

Shape parameter for Weib(scale2, shape2)

theta

Copula parameter for the Clayton copula C_theta

alpha

Copula parameter for the Frank copula tilde(C)_alpha

COV

Asymptotic covariance estimated by the jackknife method

KS

Kolmogorov-Smirnov test statistics

p.KS

P-values for Kolmogorov-Smirnov tests

CM

Cramer-von Mises test statistics

p.CM

P-values for Cramer-von Mises tests

Convergence

Convergence results for each stage

Jackknife_error

Count for error in jackknife repititions

Log_likelihood

Log-likelihood values

Author(s)

Xinwei Huang

References

Huang XW, Wang W, Emura T (2020) A copula-based Markov chain model for serially dependent event times with a dependent terminal event. Japanese Journal of Statistics & Data Science. Accepted.

Examples

data = ClaytonFrank.Weibull.data(N = 30, scale1 = 1, shape1 =0.5, theta = 2,
                                 scale2 = 0.45, shape2 = 0.5, alpha = 2, b = 10, l = 300)

ClaytonFrank.Weibull.MLE(subject = data$Subject,
                           t.event = data$T_ij, event = data$delta_ij,
                           t.death = data$T_i_star, death = data$delta_i_star,
                           jackknife= TRUE, plot = TRUE)

Copula.Markov.survival

Description

Perform likelihood estimation and corresponding analysis under the copula-based Markov chain model for serially dependent event times with a dependent terminal event. A two stage estimation method is applied for estimating model parameters. Two copula functions are used for measuring dependence. One is used for modeling serial dependence in recurrent event times. The other one is for modeling dependent censoring. The baseline hazard functions are modeled by the Weibull distributions. See Huang (2019) <https://etd.lib.nctu.edu.tw/cgi-bin/gs32/ncugsweb.cgi?o=dncucdr&s=id=

Author(s)

Xinwei Huang [email protected]

References

Huang, X.-W. (2019). Likelihood-based inference for copula-based Markov chain models for continuous, discrete, and survival data. NCU library.


Generate data from the Frank copula for serial dependence and the Clayton copula for dependent censoring with the Weibull distributions

Description

The data generation process is based on the Frank copula C_theta for serial dependence and the Clayton copula tilde(C)_alpha for dependent censoring with the marginal distributions Weib(scale1, shape1) and Weib(scale2, shape2). Censoring percentage can be controlled by constant c. This function is used when doing parametric bootstrap. The guide for using this function shall be explained by Huang (2019), and Huang, Wang and Emura (2020).

Usage

FrankClayton.Weibull.data(N, scale1, shape1, theta, scale2, shape2, alpha, b, l)

Arguments

N

sample size

scale1

scale parameter for Weib(scale1, shape1), scale1 > 0

shape1

shape parameter for Weib(scale1, shape1), shape1 > 0

theta

copula parameter for C_theta, theta \neq 0

scale2

scale parameter for Weib(scale2, shape2), scale2 > 0

shape2

shape parameter for Weib(scale2, shape2), shape2 > 0

alpha

copula parameter for tilde(C)_alpha, alpha > 0

b

parameter of Unif(0, b) for controlling censoring percentage

l

length for data generation (default = 300)

Value

A list with the following elements:

Subject

a vector for numbers of subject

T_ij

a vector for event times

delta_ij

a vector for event indicator (=1 if recurrent; =0 if censoring)

T_i_star

a vector for death times

delta_i_star

a vector for death indicator (=1 if death; =0 if censoring)

Author(s)

Xinwei Huang

References

Huang XW, Wang W, Emura T (2020) A copula-based Markov chain model for serially dependent event times with a dependent terminal event. Japanese Journal of Statistics & Data Science. Accepted.

Examples

Y = FrankClayton.Weibull.data(N = 100, scale1 = 1, shape1 =0.5, theta = 2,
                              scale2 = 0.45, shape2 = 0.5, alpha = 2, b = 10, l = 300)

Parameter estimation based on the Frank copula for serial dependence and the Clayton copula for dependent censoring with the Weibull distributions

Description

Perform two-stage estimation based on the Frank copula C_theta for serial dependence and the Clayton copula tilde(C)_alpha for dependent censoring with the marginal distributions Weib(scale1, shape1) and Weib(scale2, shape2). The jackknife method estimates the asymptotic covariance matrix. Parametric bootstrap is applied while doing Kolmogorov-Smirnov tests and Cramer-von Mises test. The guide for using this function shall be explained by Huang (2019), and Huang, Wang and Emura (2020).

Usage

FrankClayton.Weibull.MLE(subject, t.event, event, t.death, death, stageI, Weibull.plot,
                               jackknife, plot, GOF, GOF.plot, rep.GOF, digit)

Arguments

subject

a vector for numbers of subject

t.event

a vector for event times

event

a vector for event indicator (=1 if recurrent; =0 if censoring)

t.death

a vector for death times

death

a vector for death indicator (=1 if death; =0 if censoring)

stageI

an option to select MLE or LSE method for the 1st-stage optimization

Weibull.plot

if TRUE, show the Weibull probability plot

jackknife

if TRUE, the jackknife method is used for estimate covariance matrix (default = TRUE)

plot

if TRUE, the plots for marginal distributions are shown (default = FALSE)

GOF

if TRUE, show the p-values for KS-test and CvM-test

GOF.plot

if TRUE, show the model diagnostic plot

rep.GOF

repetition number of parametric bootstrap

digit

accurate to some decimal places

Details

When jackknife=FALSE, the corresponding standard error and confidence interval values are shown as NA.

Value

A list with the following elements:

Sample_size

Sample size N

Case

Count for event occurences

scale1

Scale parameter for Weib(scale1, shape1)

shape1

Shape parameter for Weib(scale1, shape1)

scale2

Scale parameter for Weib(scale2, shape2)

shape2

Shape parameter for Weib(scale2, shape2)

theta

Copula parameter for the Frank copula C_theta

alpha

Copula parameter for the Clayton copula tilde(C)_alpha

COV

Asymptotic covariance estimated by the jackknife method

KS

Kolmogorov-Smirnov test statistics

p.KS

P-values for Kolmogorov-Smirnov tests

CM

Cramer-von Mises test statistics

p.CM

P-values for Cramer-von Mises tests

Convergence

Convergence results for each stage

Jackknife_error

Count for error in jackknife repititions

Log_likelihood

Log-likelihood values

Author(s)

Xinwei Huang

Examples

data = FrankClayton.Weibull.data(N = 30, scale1 = 1, shape1 =0.5, theta = 2,
                                 scale2 = 0.45, shape2 = 0.5, alpha = 2, b = 10, l = 300)

 
FrankClayton.Weibull.MLE(subject = data$Subject,
                           t.event = data$T_ij, event = data$delta_ij,
                           t.death = data$T_i_star, death = data$delta_i_star,
                           jackknife= TRUE, plot = TRUE)

Generate data from the Frank copula for serial dependence and the Frank copula for dependent censoring with the Weibull distributions

Description

The data generation process is based on the Frank copula C_theta for serial dependence and the Frank copula tilde(C)_alpha for dependent censoring with the marginal distributions Weib(scale1, shape1) and Weib(scale2, shape2). Censoring percentage can be controlled by constant c. This function is used when doing parametric bootstrap. The guide for using this function shall be explained by Huang (2019), and Huang, Wang and Emura (2020).

Usage

FrankFrank.Weibull.data(N, scale1, shape1, theta, scale2, shape2, alpha, b, l)

Arguments

N

sample size

scale1

scale parameter for Weib(scale1, shape1), scale1 > 0

shape1

shape parameter for Weib(scale1, shape1), shape1 > 0

theta

copula parameter for C_theta, theta \neq 0

scale2

scale parameter for Weib(scale2, shape2), scale2 > 0

shape2

shape parameter for Weib(scale2, shape2), shape2 > 0

alpha

copula parameter for tilde(C)_alpha, alpha \neq 0

b

parameter of Unif(0, b) for controlling censoring percentage

l

length for data generation (default = 300)

Value

A list with the following elements:

Subject

a vector for numbers of subject

T_ij

a vector for event times

delta_ij

a vector for event indicator (=1 if recurrent; =0 if censoring)

T_i_star

a vector for death times

delta_i_star

a vector for death indicator (=1 if death; =0 if censoring)

Author(s)

Xinwei Huang

References

Huang XW, Wang W, Emura T (2020) A copula-based Markov chain model for serially dependent event times with a dependent terminal event. Japanese Journal of Statistics & Data Science. Accepted.

Examples

Y = FrankFrank.Weibull.data(N = 100, scale1 = 1, shape1 =0.5, theta = 2,
                            scale2 = 0.45, shape2 = 0.5, alpha = 2, b = 10, l = 300)

Parameter estimation based on the Frank copula for serial dependence and the Frank copula for dependent censoring with the Weibull distributions

Description

Perform two-stage estimation based on the Frank copula C_theta for serial dependence and the Frank copula tilde(C)_alpha for dependent censoring with the marginal distributions Weib(scale1, shape1) and Weib(scale2, shape2). The jackknife method estimates the asymptotic covariance matrix. Parametric bootstrap is applied while doing Kolmogorov-Smirnov tests and Cramer-von Mises test. The guide for using this function shall be explained by Huang (2019), and Huang, Wang and Emura (2020).

Usage

FrankFrank.Weibull.MLE(subject, t.event, event, t.death, death, stageI, Weibull.plot,
                              jackknife, plot, GOF, GOF.plot, rep.GOF, digit)

Arguments

subject

a vector for numbers of subject

t.event

a vector for event times

event

a vector for event indicator (=1 if recurrent; =0 if censoring)

t.death

a vector for death times

death

a vector for death vindicator (=1 if death; =0 if censoring)

stageI

an option to select MLE or LSE method for the 1st-stage optimization

Weibull.plot

if TRUE, show the Weibull probability plot

jackknife

if TRUE, the jackknife method is used for estimate covariance matrix (default = TRUE)

plot

if TRUE, the plots for marginal distributions are shown (default = FALSE)

GOF

if TRUE, show the p-values for KS-test and CvM-test

GOF.plot

if TRUE, show the model diagnostic plot

rep.GOF

repetition number of parametric bootstrap

digit

accurate to some decimal places

Details

When jackknife=FALSE, the corresponding standard error and confidence interval values are shown as NA.

Value

A list with the following elements:

Sample_size

Sample size N

Case

Count for event occurences

scale1

Scale parameter for Weib(scale1, shape1)

shape1

Shape parameter for Weib(scale1, shape1)

scale2

Scale parameter for Weib(scale2, shape2)

shape2

Shape parameter for Weib(scale2, shape2)

theta

Copula parameter for the Frank copula C_theta

alpha

Copula parameter for the Frank copula tilde(C)_alpha

COV

Asymptotic covariance estimated by the jackknife method

KS

Kolmogorov-Smirnov test statistics

p.KS

P-values for Kolmogorov-Smirnov tests

CM

Cramer-von Mises test statistics

p.CM

P-values for Cramer-von Mises tests

Convergence

Convergence results for each stage

Jackknife_error

Count for error in jackknife repititions

Log_likelihood

Log-likelihood values

Author(s)

Xinwei Huang

Examples

data = FrankFrank.Weibull.data(N = 300, scale1 = 1, shape1 =0.5, theta = 2,
                               scale2 = 0.45, shape2 = 0.5, alpha = 2, b = 10, l = 300)


FrankFrank.Weibull.MLE(subject = data$Subject,
                           t.event = data$T_ij, event = data$delta_ij,
                           t.death = data$T_i_star, death = data$delta_i_star,
                           jackknife= TRUE, plot = TRUE)